Linear Algebra I

Backpaper Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

1. Find, with justification, the reduced row echelon form of the matrix

0	1	2	7]
5	3	1	4
3	2	6	1
2	1	4	9

- 2. Without using the concept of determinant, show that the product of two square matrices A, B is invertible if and only if each of them is invertible.
- 3. Let $\mathcal{B} = ((1,7,5), (0,0,1), (4,5,6))$ denote a basis of \mathbb{R}^3 . Compute the coordinates of the three standard basis vectors e_1, e_2, e_3 with respect to \mathcal{B} .
- 4. Show that the set of real symmetric matrices of size n is a vector space over the field of real numbers. Find a basis of this vector space.
- 5. Let L be a linearly independent subset of a vector space V over a field F. Prove that L is contained in a maximal linearly independent subset of V.
- 6. State and prove the dimension formula for a linear transformation between two vector spaces.
- 7. Let V be a finite dimensional vector space over the field of real numbers. A linear operator $T: V \to V$ is called a *projection* if $T \circ T = T$. Let K and W be the kernel and image of T. Prove that V = W + K and $W \cap K = \{0\}$.