Linear Algebra I

Backpaper Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

1. Find, with justification, the reduced row echelon form of the matrix

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 7 \\
5 & 3 & 1 & 4 \\
3 & 2 & 6 & 1 \\
2 & 1 & 4 & 9
\end{array}\right]
$$

2. Without using the concept of determinant, show that the product of two square matrices A, B is invertible if and only if each of them is invertible.
3. Let $\mathcal{B}=((1,7,5),(0,0,1),(4,5,6))$ denote a basis of \mathbb{R}^{3}. Compute the coordinates of the three standard basis vectors e_{1}, e_{2}, e_{3} with respect to \mathcal{B}.
4. Show that the set of real symmetric matrices of size n is a vector space over the field of real numbers. Find a basis of this vector space.
5. Let L be a linearly independent subset of a vector space V over a field F. Prove that L is contained in a maximal lineraly independent subset of V.
6. State and prove the dimension formula for a linear transformation between two vector spaces.
7. Let V be a finite dimensional vector space over the field of real numbers. A linear operator $T: V \rightarrow V$ is called a projection if $T \circ T=T$. Let K and W be the kernel and image of T. Prove that $V=W+K$ and $W \cap K=\{0\}$.
